

Asthma and obesity, implications for treatment and control observational studies

Fernando Holguin MD MPH Asthma Institute University of Pittsburgh

Body Mass Index and Asthma. Results from the 4-state CDC National Asthma Survey

	Nationa Respira	l Asthma Sur atory Symptor	rvey ns	
	lean	overweight	obese	
N days with symptoms	ΛΛ(27_5)	1 2 (2 7 - 1 90)	5 (1 2 _ 5 7)	
Past 50 days	4.4 (5.7 – 5)	4.5 (5.7 – 4.90)	5 (4.5 – 5.7)	
Nights with Symptoms				
Past 30 days	2.7 (2.2 – 3.2	2) 2.6 (2.1 – 3.1)	4.6 (3.7 – 5)	
N attacks				
Past 90 days	3.1 (2.3 – 3.8	3) 3.6 (2.6 – 4.6)	4.1 (3 – 5.3)	

All p < 0.01;

Taylor et al, Thorax 2007:63; 41-20

Multivariate logistic regression analysis of BMI and measures of asthma severity. 4 state-sample, NAS.

OR adjusted for: age, gender, race, smoking status, income, education, employment status, family history of asthma, state of residence and residence in a metropolitan statistical area.

Obesity and asthma severity, U.S. National Asthma Survey. Health Care Utilization

Weighted estimates	Normal 1,940,746 (35%)	Overweight 1,877,938 (34%)	Obese 1,706,849 (31%)	p
At least 1 ER visit 12 months	11.9% (8.9 – 14.9)	11.6% (9.1 – 14.1)	17.7% (14.2 – 21.2)	0.01
ER visits 12 months	2.0 (1.6 – 2.5)	1.9 (1.5 – 2.3)	2.5 (2.1 – 3.0)	0.01
Urgent visits 12 months	0.9 (0.7 – 1.0)	1.0 (0.8 – 1.2)	1.3 (1.0 – 1.6)	0.01

Taylor et al, Thorax 2007

National Asthma Survey Asthma medications in the last three months

	lean	ean overweight obese					
Short-acting	ref	OR	OR				
Beta agonists	1.0	1.2 (0.9 – 1.6)	1.4 (1.06 – 1.8)				
Inhaled							
Steroids	1.0	1.06 (0.8 – 1.4)	1.34 (1.1 – 1.8)				
Remission	1.0	0.53 (0.3 – 0.7)	0.56 (0.3 – 0.8)				

OR adjusted for: age, gender, race, smoking status, income, education, employment status, family history of asthma, state of residence and residence in a metropolitan statistical area.

Required an oral steroid taper in the last 3 months (all class IV)

National Asthma Survey 4-state sample, weighted sample: 737, 186; x² < 0.001

%

Increasing BMI is associated with worse asthma control in 382 consecutive clinic patients dx with asthma

Lavoie, K et al 2006

М (±sem)	Normal BMI $<$ 25 ($n = 139$)	Overweight BMI \ge 25 $<$ 30 ($n =$ 149)	Obese BMI≥30 (<i>n</i> = 94)	F	Ρ
ACQ (total)	1.63±.09	1.60±.08	1.93±.10	5.96	.01
Q 1: Nocturnal waking	1.13±.13	0.90±.12	1.26±.15	1.24	.26
Q 2: Waking symptoms	1.41±.13	1.41±.12	1.64±.15	3.81	.05
Q 3: Activity limitations	1.11±.12	1.23±.11	1.79±.14	16.08	<.001
Q 4: Shortness of breath	1.84±.13	1.82 ± .12	2.34 <u>+</u> .15	11.48	.001
Q 5: Wheezing	1.60±.12	1.55±.12	2.06±.15	6.76	.01
Q 6: Bronchodilator use	1.17±.11	$1.02 \pm .11$	$1.53 \pm .13$	3.94	.05
0 7: % FEV1	2.83+.13	$2.70 \pm .12$	2.84+.16	0.23	.63

Among children, OW and obesity are associated with asthma severity and control Retrospective cohort of 32,321 from the Kaiser Permanente electronic record data. Asthma: MD diagnosis + dispense of at least 1 controller or rescue 5 - 17 yrs 2004 - 2008

TABLE II. Odds ratios for asthma outcomes based on weight classification

			Outc	omes			
	≥6β-ago dispense	nist units d per year	Oral corticoste	roid dispensed	ED visit or h	ospitalization	
	OR (9	% CI) OR (95% CI)		5% CI)	OR (95% CI)		
	Crude	Adjusted*	Crude	Adjusted*	Crude	Adjusted*	
BMI status							
Overweight [‡]	1.14 (1.02-1.27)	1.15 (1.02-1.29)	1.18 (1.11-1.26)	1.21 (1.13-1.29)	1.10 (1.03-1.18)	1.07 (0.99-1.15)	
Obese†	1.23 (1.12-1.35)	1.17 (1.06-1.29)	1.27 (1.20-1.34)	1.28 (1.21-1.36)	1.12 (1.06-1.19)	1.04 (0.98-1.11)	

CDC, Centers for Disease Control; OR, odds ratio.

*Adjusted for age, gender, race, parental education level, asthma controller use, GERD diagnosis, DM diagnosis.

Quinto, K; et al 2011

The associations between obesity and asthma, are not universal across age span

From the ALA-CRC, post hoc analysis of 490 pooled patients (2,794 patient-visits)

Outcomes	6-11	12-17	18-44	45-76
Symptoms	Fewer symptoms, primarily males	Trend greater overall; primarily females	No difference	No difference
Spirometry	↓ FEV ₁ and FEV ₁ /FVC	Trend lower [¥] , FEV₁ reduced in females	↓ FEV1, primarily females	No difference
EBC pH	No difference	No difference	No difference	No difference
PF variability	Trend lower	Trend higher	No difference	No difference
Symptom perception	Greater perception	Greater perception	Reduced perception	No difference

^{*} non-significant trend for both genders for reduced FEV₁ (p=.30) and FEV₁/FVC (p=.127); FEV₁ reduced in obese females (p<.05).

Obesity and asthma: An association modified by age of asthma onset

	Late-onset ast	Late-onset asthma, OR (95% CI)		Early-onset asthma, OR (95% CI)		
	Univariable (n = 506)	Multivariable (n = 435)*	Univariable (n = 543)	Multivariable (n = 468)*		
Cough						
Lean	1.0	1.0	1.0	1.0		
Overweight	1.3 (0.7-2.2)	1.1 (0.6-2)	1.02 (0.6-1.8)	0.9 (0.5-1.8)		
Obese	1.9 (1.6-4.2)	1.7 (1.01-2.9)	2.6 (1.6-4.2)	2.2 (1.3-3.9)		
Sputum						
Lean	1.0	1.0	1.0	1.0		
Overweight	0.7 (0.4-1.3)	0.6 (0.3-1.2)	1.2 (0.7-2.4)	1.2 (0.6-2.4)		
Obese	1.3 (0.8-2)	1.1 (0.7-1.9)	2.8 (1.6-4.7)	2.5 (1.3-2.5)		
Chest tightness						
Lean	1.0	1.0	1.0	1.0		
Overweight	0.9 (0.5-1.6)	0.8 (0.4-1.6)	1.0 (0.6-1.9)	0.9 (0.5-1.6)		
Obese	1.6 (0.9-2.6)	1.4 (0.8-2.4)	1.4 (1.4-3.5)	1.8 (1.05-3)		
Wheeze						
Lean	1.0	1.0	1.0	1.0		
Overweight	1.0 (0.5-1.9)	1.1 (0.6-2.5)	1.0	0.7 (0.4-1.4)		
Obese	2.2 (1.3-3.6)	2.2 (1.3-3.4)	3 (1.9-5)	2.7 (1.6-4.7)		
Dyspnea						
Lean	1.0	1.0	1.0	1.0		
Overweight	0.8 (0.5-1.3)	0.8 (0.4-1.3)	1.0 (0.6-1.7)	0.8 (0.4-1.4)		
Obese	2.4 (1.5-3.7)	1.7 (1.02-3.3)	2.4 (1.5-3.7)	2 (1.2-3.3)		
Nocturnal symptoms						
Lean	1.0	1.0	1.0	1.0		
Overweight	1.0 (0.5-1.9)	0.9 (0.5-1.9)	0.8 (0.4-1.6)	0.7 (0.4-1.3)		
Obese	2 (1.2-3.3)	2.1 (1.1-3.6)	2.1 (1.4-3.4)	1.7 (1.02-3.3)		
Low AOLO score						
Lean	1.0	1.0	1.0	1.0		
Overweight	1.9 (0.9-3.5)	2.3 (1.3-4.7)	0.9 (0.5-1.6)	0.8 (0.4-1.6)		
Obese	2.8 (1.6-4.8)	2.8 (1.5-5.4)	2.9 (1.8-4.8)	2.4 (1.4-4.3)		
Severe asthma						
Lean	1.0	1.0	1.0	1.0		
Overweight	1.1 (0.6-1.8)	1.23 (0.7-2.2)	1.1 (0.7-1.8)	0.9 (0.5-1.6)		
Obese	1.9 (1.2-2.9)	1.85 (1.1-3)	1.9 (1.2-2.9)	2.1 (1.3-3.5)		

TABLE II. Examination of morbidity association by age of asthma onset with BMI categories

Adjusted for age, sex, race, atopy, and asthma duration. Boldfaced estimates are significant at a *P* value of less than .05. This significance is for the comparison of either overweight or obese status in reference to the lean category within age of asthma categories. Across age of asthma categories, comparisons were done by using an obesity/age-of-onset interaction in the model. No significant interactions were observed.

Early-onset asthma, Late-onset asthma. OR (95% CI [n = 435])* OR (95% Cl [n = 468])* Univariable Univariable Multivariable Multivariable (n = 506)(n = 435)*(n = 543) $(n = 468)^*$ ≥3 Steroid tapers/y 1.0 1.01.0 Lean 1.0Overweight 1.2(0.7-2)1.04(0.6-1.5)1.4(0.8-2.4)1.3(0.7-2.5)1.5 (0.9-2.4) 1.11 (0.6-1.9) 2.7 (1.6-4.4) Obese 2.4 (1.3-4.2) Visited ED preceding year 1.01.0 1.01.0Lean 1.3 (0.8-2.4) 1.6 (0.9-3) 1.2(0.7-2)Overweight 1.06 (0.6-1.9) Obese 2.2 (1.3-3.5) 2.0(1.1-3.4)2.4 (1.5-3.9) 1.8 (1.5-2.3) Spent the night in the hospital for breathing reasons in the preceding year Lean 1.0 1.0 1.01.0Overweight 1.6 (0.7-3.4) 1.9(0.8-4)2.4 (1.1-5.3) 1.8(0.8-4)Obese 2.6(1.3-5)2.2(0.9-5)4 (1.9-8.3) 3.3 (1.5-7) Admitted to ICU for asthma reasons/preceding year 1.0 1.0 1.0 1.0 Lean 3 (0.7-11) Overweight 2.2(0.6-7)2.2(0.6-7)2(0.4-8)Obese 2.3(0.7-7)1.3 (1.4-5) 6.5 (2-22) 6 (1.7-22) Mechanical ventilation ever 1.0 1.0 1.0 1.0Lean 1.0 (0.4-2.6) 1.0 (0.4-2.6) 1.3 (0.6-2.8) 1.0(0.4-2.3)Overweight 1.2 (0.6-2.6) 0.99(0.2-2.2)Obese 2.6 (1.4-5) 2.08 (1.1-4.3) Pneumonia diagnosis ever 1.0 1.01.0 1.0Lean Overweight 1.1(0.6-1.9)1.1(0.6-1.9)1.2(0.8-2)1.3 (0.8-2.2) Obese 1.6 (1.03-2.5) 1.5(0.9-2.4)2.4 (1.6-3.4) 2.2(1.4-3.7)

Obesity is associated with health-care related outcomes more strongly in early onset asthmatics

Holguin, F; et al 2011

Higher BMI is associated with a reduced probability of achieving asthma control 406 asthmatics (> 1300 consultations) for an average period of 180 days Study modeled the probability of transitioning from unacceptable to acceptable asthma control

All patients were treated according to standard asthma guidelines

Are weight categories associated with the ability to achieve asthma control at 12 weeks?

Post hoc analysis of 1242 patients from 5 pooled randomized clinical trials

Controlled: based on symptom control, absence of exacerbations over 5 – 7 day period

OR: Adjusted for age, gender, smoking history, Atopy, asthma duration, treatment (random)

Boulet, L-P et al, 2007

A BAL MKP-1 fold-change

Increased BMI is associated with a blunted *in vitro* glucocorticoid response

BAL MKP-1 fold-change

Sutherland, R et al, 2008

BMI not associated with asthma control in 292 asthmatics. Urban setting, >60% obese or OW, 2/3 African American 80% female, 60% smoking prevalence

TABLE IV. Self-reported health care use and prescribed asthma medication by BMI category

	Overall (n = 292)	Normal weight 18.5-24.9 (n = 44)	Overweight 25-29.9 (n = 65)	Obese I 30-34.9 (n = 62)	Obese II 35-39.9 (n = 50)	Obese III ≥40 (n = 71)	P value
Acute care, N (%)							
Hospitalized within the past year	39 (13)	5 (11)	10 (15)	5 (8)	7 (14)	12 (17)	.61
Emergency department visit within the past year	102 (35)	16 (36)	28 (43)	18 (29)	21 (42)	19 (27)	.19
Prescribed inhalers, N (%)							
Short-acting β-agonists	285 (98)	42 (95)	65 (100)	60 (97)	48 (96)	70 (99)	.48
Long-term controllers	184 (63)	22 (50)	40 (62)	40 (65)	32 (64)	50 (70)	.29

Clerisme – Beaty, et al, 2009

Why does BMI or obesity influence (or not) asthma control?

Different asthma phenotypes are differently affected by obesity i.e. adult vs child onset

In those most sensitive to the effects of obesity (obese – asthma phenotype), have less eosinophilic airway inflammation (i.e. less steroid responsive) Obesity reduces effectiveness of inhaled steroids; either directly or indirectly (i.e. vitamin D)

Asthma control measures are symptom-based and in general, obesity *per se* increases symptom severity

Mapa 1.9

Sobrepeso y obesidad en mujeres mayores de 20 años por entidad federativa, ENSANUT 2006

Mapa 1.10

2006, Encuesta Nacional de Salud Y Nutricion 2006

Obesidad, un problema sin fronteras.

CDC, BRFSS 2009, obesity % in adults